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very long but indeterminate psriod of time. In such cases, it
is reasonable to use the average cost per unit time error cri-
terion, and to suppose that the system is of interest over an
infinite time horizon. Our model is of the diffusion type, and
we are ccrcerned with practical computational methods for getting
good approximations to the minimum cost and optimal policy. The

approximation methods used in the book Approximations in Stochastic
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Abstract

Approximation methods i1or the ' inimum average cost per unit time
problem with a controlled diffusion moinl is treated. 1In order to
work with 2 bounded state space, we use the reflecting diffusion
model of Strook and Varadhan, although other models can also be
treated. The control problem is approximated by an average cost
per unit time problem for a Markov chain, and weak convergence
methods are used to show convergence of the minimum costs to that
for the optimal diffusion. The procedure is quite natural and al-
lows the approximation of many interesting functicnals of the

optimal process.

1. 1Introduction. In this paper, we develop an approximation and

computational approach to a particularly difficult class of sto-
castic control problems. The computational problem leads to the
approximation of the original process and optimization problem by
an interesting and simpler sequence of processes and optimization
problems, which yields much information on the original optimal
process.

Let w(+) denote an RY-valued Wiener process, let % denote a
cbmpact set and define the bounded and continuous functions
£(+,*): R* x Z > R"; k(+,*): R® . x % > R; o(-): R® » r *
matrices. Let x(+) denote a non-anticipative solution to the

I1to equation
(1) dx = f(x,u)dt + o(x)dw,

where u(-+) 1is a non-anticipative (always with respect to w(*))
% -valued progressively measurable control function. For typo-
graphical simplicity we sometimes write Xs for xi(s), etc..
Define Y“(-) by
u —— _ul =
(2) Yoo (se) = H = f k(x. ,u )ds,
Eaw X t 0 S s

where E: denotes the expectation when Xy = X and controel wu(:)
is used.

We are interested in finding good approximations to the infimum

Y of Yu(x) over all controls u(.), and to the optimal control,
and also other information concerning the optimal trajectory, in
cases where Yu(x) does not depend on the initial state x.
Furthermore, we want to be able to compute the approximation and




obtain the additional! infmimati n b ing practical computational
‘methods.

A number of difficulties stand in the way of a practical computa-
tion. First, the state space R of x(-) is unbounded and the
control problem (1) - (2) will have to be modified so that the
state space is bounded. This is a particularly ticklish point,
since we want a modification which yields usable information con-
cerning the original problem. In particular situations, a great
deal of attention must be devoted to this. For definiteness, we
use the bounded process defined in Section 4, although many others
are possible. Next, we have not assumed very much abkout the system
CEW o EE Yu(°) actually depends on x, then very little is known

about the problem. Fortunately, for many problems (perhaps the

most important ones) we can restrict attention to u(*) which are
stationary (u(-) is a stationary process), or to the staticnary
pure Markov case (where u, = u(xt)). Even then, the solution to

(1) may not be unique. In practical problems, it is often demanded
that the system have a certain robustness. Criteria such as (2) are
of interest when the system is to operate over a long period of
time, usually of uncertain duration and with an uncertain initial
condition. It is usually desired that the control be stationary
pure Markov, and that for the controls u(*) in the class which
are to be considered there be an invariant measure uu, and the
measures of x(t) tend to WY as t » ® for eaci x = Xqye In
certain cases (e.g., Kushner [l]) one can restrict attention to
such controls. 1In general, little is known about the continuous
parameter problem, and many of the difficulties in the way of
establishing convergence of a computational procedure are due to
this. Also, it is usually hard to approximate problems over an
infinite time interval, unless the approximation and limit
processes are stationary. Furthermore, the ergodic subsets for
each approximation may depend on the approximation. In any case,
the procedures to be developed here are very natural, provide much
information, and do give the desired results under broad
conditions. We will later make an additional assumption on the
system.

Our approach follows the ideas in Kushner [2], [3] and Kushner
and DiMasi [4]. The problem (1), (2) is approximated by a control
problem on a Markov chain (with approximation parameter h), and
weak convergence methods are used to show that certain interpola-
tions of the sequence of approximating chains oonverge weakly to an




Op ..mal process. The method j5iel s & arcat deal of information on

the optimal process; e.qy., invari nt mensures and joint distributions.

A’ formal dynamic programming approa~Y o the optimization of (1),
(2) is given in Section 2, Section 3 aryues for a "computational
approximation" and a bounded state space. The actual form of the
bounded state space model, the Strook-Varadhan model of a reflected
diffusion [5], is discussed in Section 4. This model is used partly
for the sake of specificity and partly because it allows us to
illustrate some interesting features of the weak convergence and
boundary time scaling. The actual discrete state model is developed

in Section 5 and Sections 6 and 7 give the weak convergence results.

2. A Dynamic Programming Sufficient Condition for

Ooptimality for (1), (2).

Let <Y denote the differential generator of (1):

52
u . 9 o
& = ] (mu) g+ ] a, .dn) e,
i 1 3xi i3 257 inoxj
at+)y = g(=)of*)" /2,

When evaluating ;qu(-) at s Epu s ifor Al C2(Rr) funetion P},
set x = Xeo U = U, Suppose that there is a C2(Rr) function
V(+) and a constant Y such that
(3) inf [<%v(x) + k(x,9) - Y] = 0,

a e

where Z° is now treated as a parametrized operator. If there
is a Borel function u(*) on R’ such that o = U(x) minimizes
at & 1n (3) for each x € Rr, and to which there corresponds a
process (1) such that Eiv(xt)/t + 0, then

=
- _ " _]—_‘u -—
(d4a) Y = lim T Ew ( k(xs,us)ds.

> gl
1f, in addition, v(*) 1is any %-valued non-anticipative (w,t)
progressively measurable function (henceforth called a control)

corresponding to which there is a solution to (1), and if

3 oV
E EXV(xt) &> 0, then
. g
(4b) Y < lim £ By f kg v i,
t>o 0
TICABLE
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and u(+) is optimal it} spet to auch w(+) in the sense that

yu.i yv for any XO either fix:d or random, Under u(*) or w(-),
(1) is homogeneous, but there is not necessarily a unique invariant
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3. Bounded State Space Approximations. The approximation and

computational method developed in [2] is roughly as follows. Let
u(*) be fixed, and let it be a function only of the state x. We
derive a family (parametrized by h) of Markov chains. For fixed
u(-), the sequence of (suitable) continuous parameter interpola-
tions of the chains converge weakly to the solution to (1), as

h - 0, under broad conditions. For each h, we have a controlled
(indexed by u(-)) family of Markov chains. Optimize, using the
appropriate Markov chain version of (2), and obtain the minimum
value function for each chain.As h =+ 0, the sequence of minimum
values converges to the infimum, over a large class of comparison
controls, of the value function of the original problem. Also,
many properties of the approximations converge to similar
properties of the limiting optimal process.

Since our interest is in feasible computations, as well as 1in
convergence, it is necessary that for each h the state space of
the approximating chain be finite. This requirement necessitates
revision of the original system (l1). The following are among
several possibilities that can be dealt with.

(i) The state space may be naturally bounded, in that there
are bounded sets GO,Gl such that if X 3 GO' then X, ¢ Gl for
all € and all uf+):

Gy EE X, € GO,
for all h, under the optimizing controls.

then the approximating Markov chain remains
in Gl'

(1ii) Impulsive control terms ([2], Chapter 8) are added to the
cost function, such that the state is guaranteed to be "impulsively"

driven into GO’ if it ever leaves Gl'

(iv) A bounded set G can be introduced, such that Xy is
not allowed to leave G = G + 38G. To guarantee this, a suitable

boundary process is introduced on 39G.

For concreteness in the development, a particular form of (iv)
will be dealt with. We let G be a hyper-rectangle and suppose
that x is reflected from 03G. A hyper-rectangle is chosen only

g -
to simplify the specification of the approximation on the boundary.

Any region for which a specification with the proper convergence |
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4. The Submartingale Proublem of Stron¥ and vVaradhan [5] in G.

In order to assure ourselves that th~ reflection is well defined,

assume

{AL)  far each 1, aii(x) is strictly positive on the boundary

planes of G which are parallel to {x: x, = 0},
Ll 1
where X, = a1 component of x.

We introduce a boundary control and cost function. Let ‘&O be

a compact set, and define the bounded continuous functions

¥loesds 36 % % » RY; g tianle 968 2w Ry pf): 36+ {0,1).
Let the vector Y(x,a) with origin x point strictly interior

€0 G for eseh = '€ 4G and @ € @%. For A C Rr, set

IA(X) = indicator of set {x: x € A}, let x(-) denote the generic
element of Cr[o,m) (Rr—valued continuous functions on [0,«)) as

well as the solution to (l). Hopefully, no confusion will arise.
Define Cé = Cr[O,w) Gl ) . Xe € G, all & < «} and

- r 7 ’ :
jt = og-algebra on CG induced by the projections Xgr S < . Fox

this reflecting diffusion,admissible controls wu(:) are %-valued
when the process state x, €3G, and are ‘%O—valued when the process

€
state++x & .0Gs E‘or+ gl =i & Cz'l(a X [0,x)) and admissible

2 o
u(+), define the function F;(-,-) on cé(o.w) by

5 FU(x(+),t) = T LT | t[3—+ e s)I.(x_)d
( ) q X( ) e ) = q(xt, ) C{()»O, ) 5 3s I ](](Xslb) G Ke S

For the moment, let wu(-<) depend only on the current state x.
Suppose that for some y ¢ G, there is a measure P; on Cé such
P;{XO =y} =1 and for each q(-,*) in C2'l(a X [0,2)) for which
p(x)qt(x,t) + Y'(x,u(x))g (x,t) > 0 for all x € 3G, and all t 2> 0,

the process {Fg(°,t),52t,P;} is a submartingale. Then P; is

said to solve the submartingale problem for initial value y. If,

in the above, the vector y can be replaced by a measure VO on- G;
and Pgo{xo
to solve the submartingale problem for initial measure V

e T} = VO(F) for each Borel set T, then P is said

0
If u(+) depends only on the current state x, then the solution

92,1 is the set of uniformly bounded continuous functions on

G * [0,») whose derivatives up to second order in x and first
in t, are continuous and uniformly bounded.
++ and u, is ¥, measurable.




jive; the d-ecired reflected diffusion,

t. the submartingale p:
and ‘ylx,u(x)) is the average "direct i of reflection" at ' x & 0G,
and p(x) 1is a scale factor which detsrmines the relative time that
%l«)  'spends on 96 ([2], (3], [5)).  Since P(~) only affects the
time scale, and not the costs ([3], [2], Chapter 10), for our
modelling purpose it is sufficient to set p(x) = 1, which we will
do.

Let P; solve the submartingale problem. There is a non-
decreasing scalar valued process p(*), which only increases when

X, € 3G, and is such that for the above qg(:,:*)
pl
u

(6) Fq(x(-),t) - Jo{czs(xS,S) % ‘y"(xs,us)ﬁ,x(:-cs,s)]d‘.:q

is a martingale (with respect to {P;,Kﬂt}). Furthermore, there

. x -+
is a standard Wiener process w(+) such that under P$,

(x(*),u(*),u(+)) are non-anticipative with respect to w(+) and
Wbl
i &
7 = & 3 ‘S 7 (3 I J
(7) Xp NVhh JOf(xs,uS)LG(\s)a + JOL(\S) c(Vs)u\S

e
+ S ) i
JOIBG(xs)i(KS,uS/ H

For the control problem, we may wish to deal with a larger class
of (admissible) controls than the stationary pure Markov class.

We can still speak of a solution to the submartingale problem, but

then the measure P§ or PS must be defined on the appropriate
0
o-algebra on the product space of Cg and the path space for the

control process. If this extended submartingale problem has a
solution, then the non-decreasing process u(:) and Wiener process
w(+) will still exist and (6), (7) hold.

A modified control problem. Suppose that there is a solution to

the submartingale problem corresponding to admissible control

u(*), and initial condition y. Define Yu<y) now by

s €

u - e & ,u (
(8) Y (y) = lim % el B k(xs,us)I

to X lo G(xs)ds * J ko(xsrus)lac(xs)dhs;.

0

*r0 construct the Wiener process w(+), we may have to augment the
probability space by @dding an independent Wiener process.




Sinc Pp=1, we can set u_ = s, The formal dynamic programmi..
i S -

equation (3) is replaced by

i inf [SOVIx) + K(x,0) - F] =0, x &G,
ae%
; (9) £
S IR () (G0 il L (e G =S 0 S e e 3G,
aa@6 i 0

where V(:) 1is now assumed to be bounded. If there is a solution
to the submartingale problem corresponding to admissible control
v(+) and initial condition vy, and also a smooth function V(-)
and constant Y sclving (9), then

(10) ¥ < (y)

1f there is a Borel admissible control u(*) which attains the
infimum in (9), and for which the submartingale_problem has a solu-
tion for each initial condition x, then Y = Yo(y) and u(+) is

optimal. We emphasize that although (9) will serve as the basis of

our approximation, it need not have a solution of any sort for our

method to be valued.

5. Discretization. There are a number of technigues for getting an

approximating sequence of Markov chain control problems with the
correct convergence properties. We use the method in [2] mainly
because it is relatively straightforward, fairly well understood
and we can refer to existing results. The method is based.on a
finite difference approximation with difference interval h. A
particular (but natural) finite difference approximation to (9) is
used. It makes no difference whether or not (9) has a smooth solu-
tion, for the finite difference approximation is not used to

solve (9). After a suitable rearrangement, the coefficients of
certain terms in the finite difference approximation will be
transition probabilities for an approximating controlled Markov
chain. This is the only use to which (9) will be put. The method

gives us an approximating chain simply and automatically. A
detailed outline of the method and of some of the convergence
properties will be given, but many of the details which can be
found in the basic references [2], [3], [4] will be omitted.

Let e, = unit vector in ith coordinate direction, and assume for

convenience that each side of G 1is an integral multiple of h.




denote the finite difference grid on G, and set &G

“h

Eh - Gh' where Eh is the finite difference grid on G. Now, let

us discretize (9). On 093G, use the approximation

W
o

V. (%) -~ [V(x+eih) =SVl Yi(x,u)
(11)

Vo) e (s = V(x-eih)]/h, 4fi Yi(x,J) o0,

In G, use the approximation

in(x) > [V(x+eih) O WG e fi(x,ﬁ) > 0
(12) in(x) R V(x-eih)]/h, WE fi(x,u) <0
Vyx, )+ [Vikre ) + Vix-e,h) 2V (x) 1/h°.
The approximations for Vx.x.(x)' i # j, are long, and the reader
=)

is referred to [2], Chapter 6.2 for one set of possibilities.
Simply to avoid writing these down here, we suppose that o¢(x)d' (x)
is diagonal. This assumption is not required by anything except
our current laziness. It does not affect the outcome, only the

precise form of the functions Qh(-,-) and ph(-,-) introduced

below.
Define Qh(x,-),ﬁth(x) and 5h(X) by
0 (x,0) =h ¥ [£, (x,0)] + § 0%(x) X € G
o s R R J : gl b
35 1
Q, (x,0) = E ;wi(x,u)l ;X €3Gy
Qh(x) = sup Qh(x,u),

(01
(where ® ranges over the appropriate set % or @b),

Ath(x) h/ﬁh(x) on 3G

hl

Il

2 = -~
h /Qh(x) on Sy, -

Approximating the derivatives in (9) by (11)-(12) and rearranging
terms yields the following equation, where Th and Vh(-) are
used to denote the solution to the discretized equation and we use
the definitions g+(x) = max[g(x),0] and g-(x) = max[0,-g(x)].




""-'NIIIIE?*‘.m~.T

(13) hzT“ = inf [—Qh(x,u)vh(x) + ) Vh(xtcih)(hf;(x,w) . oi(x)/Z)

e Ja b

2
- h k(x,“)], X S Gh[
BYY = inf [0 (x,0)vP () + T vPixte.miytix,0) + hk.(x,a)],
Y h ; (Y i 0
a e 1y 2
0
BN ach,
. h \ . BhciiH 2 h —
Define p (x,xteih‘u) = (coefficient of V (xteih))/Qh(x),

P (x,x|a) = [Qy, (x) = Q (x,4)1/Q(x). Divide (13) through by
Q (x) and rearrange to get

(14) Vh(x) + ThAth(x) = inf [ } Vh(xieih)ph(x,x:eih!J)

( g, PR
Qe 1,

2 WM e e, ] ) + kix0)AtPRIT, % £6

and similarly for x 4n GGb, where % and k are replaced by
‘%0 and ko, resp. Define ph(x,y =08 for all x,y other
than y'= %X @r o = X & eih for some i. Then {ph(x,yfd), Xy

Y € Gh} is a transition probability for a controlled Markov chain.

Let {ég} denote the random variables of the chain, and define

Xix) = % in G, and Wix) = ‘%b on 3G, and redefine k(x,x)
to equal ko(x,u) ftor  x € 9G. Then (14) can be rewritten in the
form
(15) Vi) + Patiie) = ing EOVEED) * ke olsel ], % € 6.
LEY X & h
L EX (%)
In (13)-(15), we supposed that Th is a constant. This is almost

equivalent to the assumption that there is only one recurrence
class for the chain under the optimal control. If there is more
than one recurrence class, the numerical problem is harder. Let us

henceforth assume

(A2) For_each small h and under each stationary pure Markov

control, there is only one recurrence class.

This assumption seems to hold in very many cases of practical
interest. It can be dispensed with, but then the problem of
actually solving (13)-(15) is much harder. Under (A2), (15) can be
solved by either Howard's iteration in policy space for semi-Markov
processes, or by a version of the backward iteration method for the




‘average cost per unit time problem (see, e.g., Schweitzer and

Federgruen [8], but adapted to & semi-Markov process model). There

G . : e,
is an optimal stationary pure Markov control u (-) for all small

h, it is the minimizer in (15), and it is optimal with respect to
all controls for the discrete problem. The "Semi-Markov" point will
be returned to below. The optimal solution is given in the first
line of (19).

Discussion of (l4). For y € G we have for any stationary pure

bk

Markov control u(-)

SR e R R ) e : B
(16a) ‘“y["n+1 Splbp = Yo ul+) wused] = f(y,uly))it (y),
covu[:h - "h!:”h = v, wle) used] = ofy)c! \'}'\'“ﬁ-h( g s
e oo o S Gl SR : i S
h
+ o(it (y)), x € Gp.
For y € 3G,
SRy Sl o) . h
Eyl%n+l = snfsn =y, u(*) used] = Y(y,u(y))at (y),
(16b)
Uk SR e i) 5 il
CCVylvn+1 §.16. = ¥ uls). used] = olft (y))

These "infinitesimal" properties (derived in (2], ([3]), together
with (15), suggest a close relation between the controlled chain,
and the controlled reflected diffusion.

These relations are brought out quite clearly when the chain is
suitably interpolated into a continuous parameter process, and (15),

(16) suggest several useful interpolations. First, we note that

solving (15) is_the only computation that need be done. Equation

(15) is not quite the dynamic programming equation for the average
cost per unit time for the controlled chain {éﬂ}, since Th

a state dependent coefficient Ath('). However, it is the dynamic

has

programming equation for a semi-Markov process or, equivalently
for the types of continuous parameter interpolations which are
discussed below.

Let ﬁh denotesthe invariant measure which corresponds to the

optimal control. Henceforth, unless otherwise mentioned, {52}

refers to the optimal chain, with initial measure ﬂh.

We now choose an interpolation method and show that the sequence
of interpolated processes converges weakly to a solution to the
submartingale problem corresponding to some admissible control

——




u(+), and that this solution is an optimal one, with cost rate
¥ = 1lim 7O,

h~+0
Either of the following two piecewise constant interpclations will

serve our purpose.

. 3 h, . h B Rk 2
Interpolation 1. Define At (§)) = At., t = y AtS. Define the
: el -h =39) h . h
semi-Markov process & (+) by & (t) = By OB [tn'tn+l) This
interpolation was used in ([2], [3].
Interpolation 2. Let ih(-) denote the Markov jump process on
G, defined by:
h
B ;h(t) = y, then the average additional time spent in state y
before a jump is Ath(y), and P{next state = y'| current state = y}

= ph(y,y"uh(y)). There is a slight ambiguity here since it is
possible that ph(y,y:uh(y)) > 0. But, this should cause no con-

fusion - for it simply means that there is a jump of "zero"
magnitude. The average interjump times can be normalized to avoid
this, but it hardly seems worthwhile. Note that

F{jump in (t,t+A]jih(t) =y} = (L/Ath(y)) + o(4a).
This interpolation is developed in Section 8 of [4].

Neither interpolation is always preferable to the other. Inter-
polation 2 could have been used in references [2], [3], but there
did not seem to be a need for it then. There are advantages to
having an interpolation which is a continuous parameter Markov chain
in that certain concepts (such as stationarity) have a clearer
meaning; on the other hand it is sometimes preferable to work with
interpolation times that are deterministic functions of the current
state, since then there are fewer random variables to worry about.
The limiting processes (sce Sections 6 and 7) are the same for both
interpolations. In Case 2, the average sojourn time in a state vy
(before the next jump, whether of zero value or not) is Ath(y),
precisely the interpolation interval for Case 1. In both cases, the
time spent at a state y on the boundary (0(h), per sojourn) is
greater than time spent at a state y in Gh (O(hz) per sojourn,

unless there is the complete degeneracy o(y) 0). This property

is a consequence of our definition of Ath(y) for ¢ € Z)Gh




(te correspond to p(y) = 1).

For either Interpolation 1 or 2,

i
(17) T = 1im 2P [ ke, uMasse,
3 X J S S
t->o 0
where ug = uh(ig), and Eg indicates that uh is used. The in-

2 " ] ; ; h
variant measure for either interpolation is d , where

(18a) WPy = st a8 a1
z
Also,
(18b) Th =Y Uh(y)k(y,uh(y)).
}V

Equations (17) and (18) are not hard to verify. TFor example,
(18) follows from the ergodic theorems for Markov chains (see
Chung [6], Section 1.15, Theorems 1, 2, 3; see also (2],

Chapter 6.8, for similar calculations). It can also be obtained

by direct verification of the Kolmogorov equation using the in-
h

variance of T () for the discrete parameter chain. To get (17)
1
write u? for un(;?) and use (15) and the same ergodic theorems
to get
n=1 n=1.
(19) T = 1im (] 7 k@D uMaelED 5 e
bl A 2 i
n-> i=0 1=0
=1 REAl
= lim [ § k@M uhaels T oaed)
n i=0 i i=0
{(Wepwil)
b :
= lim ( k(g:,u:)ds/tg = lim ( k@?,uzkkvt
n Jo (w.p.1) J0
(wep.1l) tooo
t
= lim f £k gD, ulyas/t.
Liste g X 8 g

Similarly, the first limit in (19) equals

I M yrkiy,uP ot/ I iy at iy

Y : 4

~h
T

(20)

I WP yrkiy, Py .
Y
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Let v(*) denote a stationary pure Markov control. Then (15)
; . Jg 1 - :
implies that (here Ati,gi now refer to the variables under control

v(~))} for any x

. n-1 " I I
B D AtTRIE S vIEN)
(21) Th P 1=0 Yv,h
T pew v Bzl h
E i A‘: {68 l
% 1=0

/ : : h : ’
The proof of optimality of u (:) with respect to any control which
is not necessarily stationary pure Markov can be based on a method

of Ross [7] and is omitted.

6. Weak Convergence. We will work with Interpolation 2, since it

is a strictly stationary process. The method will be outlined, but
the proofs will be usually referred to when already available
elsewhere. So far, we have a sequence of stationary pure Markov
controls {uh(-)}, corresponding stationary continuous parameter

; ~h : ; h L
Markov chains {§ '(-)}, invariant measures {1 '}, and minimum costs

{?h}, where

= Bk = T Pk, o
yEGh yt,(,h
- 1
+ 3 WMy yut ),
}'L\'L:}_‘
and
17 L
oh B Y el B R o B o B o

(22) Yt=E [jok(”s'us”c("s)d° . Joko(»s.us)lm(ss)da].
where Eh denotes the expectation under initial measure uh, and

we use ug = uh(ﬁﬁ). We often write Ch(s) as éz, ete., for

typographical simplicity.
We obviously can write
L
P SIS o 3! e i b
(23) S gy * JOIG(QS)f(;s,us)dS

5 -
h 1 h AR h, .
+ foxac(gs)y(gs,us)ds + 8%t + Bh(),




where

t 1
B (t) = f 1o M 1asM ) - £¢e",uMasi,
O )
t
h o Gt b TR B h
By(6) = | Ty a6y - V(5 ug)dsl.

}.
Denote the two integrals in (22) by Kh(t) and Ka(t), resp.,
h
Q— (t)

» m £
and Qg(t), resp. Let Dm[o,m) denote the space of R valued

and the first two integrals on the right side of (23) by

functions on [0,~), continuous on the right and with left-hand
limits (Billingsley [9], Lindvall [10], Kushner [2], Chapter 2),

endowed with the Skorokhod topology. If a measure \n induces a

B, : . m 5 e T
process X (+) with paths in D {0,x) w.p.l and {‘nj is tight,
; n - : ‘ : >
we abuse terminology and say that (X (-)} 4is tight. If ‘Vr}
 §
converges weakly to a measure Vv and Vv induces a process X(-)

; : m T "
with paths in D [0,®) w.p.l, we say that 1X (=)} converges

weakly to X(*). We occasionally use Skorokhod imbedding ([11],
Theorem 3.1.1, or [2], Chapter 2), which says that if Xn(-) I (e5)
weakly in Dm[O,m), then there are processes i(-),in(') with
paths in Dm[o,m) and which induce the same measures on Dm{O,w)

n : 3 g} -
as do X(-),X (+}, resp., and are such that X (=) > X(:) w.p,l
in the Skorokhod topology. Since all our limit processes will be
; AR . ~n > ;
continuous w.p.l, this implies that X (t) =+ X(t), uniformly on

bounded intervals. Also, we onit the tilde =~ mnotation. The

following theorem follows from the results in [4], Section 8.

Theorem 1.7 (¢"(4), k"), kB(y, 8"y, BRey, QM QR
¥ SYt2 :
{¢ D [0,%) ., and akl 1i
P

( 1its have continuous
aths w.p.1l.

+Y}} 48 tight on

r=|

We will next characterize the limits of {Bh(-),Bg(-)?.

Let us choose a weakly convergent subseguence, also indexed

by h, and henceforth fixed. The subsequent results will not depend

upon the selected subsequence. Denote the limit by E(n ) Rl

KO(-), B(+), By(s)e QC)y Qg(+) . By construction, Dh(t) and

+ :
Theorem 1 does not require Al or A2 and holds whether the initial
conditions are random or not. It needs only the boundedness and

continuity of f,o,k,ko and Y. Also, uh can be replaced by any

pure Markov control.




Bg(j) are martingales (with respect to the o-algebras hr in-
‘duced by 52’ s < t) and an easy calculation yields that
1D supinh(t)lz < constant-hT.

0 ! — [

t<T
Thus BO(-) is the zero process.
The quadratic variation of Bh{-) is

&

R, TR T
) > “‘ -
JOL (L’S)J(‘:(L’S)ds'
: vh - s : : , :
where } (x) is such that it converges to o(x)o'(x) as h » 0,
; ; - S 4
unifoermly in x, and sup E|B (t)f gl oEgr éach ' £ > 0. Then
h
r| h '21 . of e =u . - . -

: {B(t) | kL is uniformiy integrable for ‘each  t. TLet fﬁt denote
the o-algebra induced by {iS,B(s),K(s),Ko(s),Q(s),Q(s), § < tl.
Let N_ denote an ¢ neighborhood of 6G. In [3]),;, Lemma 1, it
is shown that for each real T > 0 there is a constant K such
that, for Interpolation 1 and small g > 0

T i ;
(24) E, | Iy (BIL(5)ds ¢ KE,
JO £

uniformly in u,h (although u did not appear in the derivation,

only an upper bound to the values nf the drift function f was

used in the derivation). The result (24) depends only on the fact
that the component of the diffusion term ¢(x)dw orthogonal to the
boundary is uniformly non-degenerate on 3G; i.e. on (Al).

Estimate (24) also holds for Interpolation 2, and is crucial for
the rest of the development. It says that neither the approxima-
tions nor the limit can "linger" near (but not on) the boundary.

In particular, it implies that the probability is zero that over
some subinterval of [0,T] the paths for the approximations will
be in N_ N G and the limit will be on 4G.

'heorem_2. Assume Al. ({B(t), 4 .} 1is a continuous martingale

il

}é &
S " . . - - e 2 sV (E
with quadratic covariation JOL (QS)L(QS)» (,s)ds.

~
a

Proof. The proof, using (24), follows similar calculations in [2],

‘:h(.)

(see Theorem 1), let n denote an arbitrary integer, tj, i <n, w
numbers less than or equal to t, let s > 0 and let g(-) denote !

(31, [4]. TLet qh(t) represent any of the vectors in




a. continuous real valued function. By weak convergence, Skorokhod

imbedding and the uniform integrability of {iBh(t)l} forieach t,

the result (martingale property of Bh(-))

Ehg(qh(ti)l ) [Bh(t+s) - Bh({;)] = 0
implies
Eg(q(t;), i < n)[B(t+s) - B(t)] = 0.

Also, the result

Ehg(qh(ti), § e mh LB (era) - BReIBE sy = B (e))
t
hyeh  h, . ; _
- J{Olc“s“ chasi = o

p - S : 2 d +
together with the weak convergence, Skorokhod imbedding and uniform
125

integrability of 8% (¢) and (24) implies that

EG(QCti), i < n)[(B(t+s) ~ B(L}} (B(t+s) - B(E))"

&
- | 15t g0ts )0t e8] = 0.

The arbitrariness of g(:), t, & + 54 ti' i <n, and n imply
the theorem. QB D

We next need a representation for Q(:), QO(-), K(*) and Ko(-).
It is easy to see that all these functions are absolutely continuous
with respect to Lebesgue measure. Thus, there are measurable («,t)
functions E(-), EO(-), k(+) and EO(-) such that, for almost
all w;t,

£ rt

Q(t) = ( q(s)ds, Qo(t) = j ao(s)ds
0 0
T »t_

K(t) = k(s)ds, K. (t) = [ % (s)ds.
0 0 Jg 0

+Actua11y, uniform integrability of (\Bh(t)!z} (implied by

sup Eh[Bh(t)!4 < » is not needed. Since B(*) is a square
h

integrable continuous martingale, its quadratic variation can be
obtained by a "localization" of the argument.
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implicit function theorem. We take the latter (and easier) apprcach.

. We can now proceed in two ways, ¢ither working with generalized

random controls or by imposing a convexity conditien and using an

+ d
Theorem 3. Assume Al and A2. Let f,k,k be continuous and

v o
pr - © SR By LU 4 Dlll
=2 {

let the sets {f(x,a), k(x,2), « ¢ %} =z g(x,%) and {v(x,%),

ko(x,a), & & C%O} = go(x,‘%b) be convex for each x. Then there
. — =7 il - . . : S
is a control wu(=) with values u. in %  when 2, © 6 and in

= e e R 2 ol -~ 3t e i e
‘%0 when is € 86 and such that, for almost all ,t,

olt) = Y5 00 Ia0050)
kit) = k(6 W II (E)
ko (£) = k(6 ,u )T, (§.).
Proof. Define g(t) = (E(t),k(t)) and g,lt) = (F (t),ky(t)).

)
The proof uses the basic estimate (24) and the method of [2],
pp. 182-183. By (24) and [2], pp. 182-183, for almost all w,t

from which the result follows by the McShane-War field implicit

function theorem as in [2), Theorem 9.2.2. Q«E.D.

Ssumming up the results of Theorems 1 to 3, we get the repre-

sentation (under Al and A2) ]
B, = E % rtI e B _,u ) (tl 5 )YE _,u)ds + B(t) i
(25) e < =g jo G(.’S) (vs:dszcm + )'0 (‘G("S)\(QSIUS S Bt
where B(t) is a continuous martingale with quadratic variation
;=
f IG(QS)U(QS)O (;S)dS-
0 i
+This control is also non-anticipative with respect to the w(*)
introduced below (25).
3




Also, there is a Wiener process '/(*), with respect to which all the

_other processes in (25) are non-anticipative and such that

t
B(t) = ( I (;S)Q(gu))dw(s). Obviously, by the weak convergence,

g8 £
is in G for all t. Let ZY denote the dif ential generator
associated with (25) in G. By a slight modification of the
argument associated with (40) and (41) in [3], we can show that
£ (+*) solves the sub-martingale problem.

Furthermore, € (+) is a stationary process. Let its invariant
measure be denoted by u, (which is the weak limit of {j r‘), and
let Y = lim Th. Then the distribution of EO AR TR L oR el B e

h
(2‘1)’
e et
(26} Fe = Eu[} I (6 )k(E T )ds + J’ T, (6 )k, (5 _,8_)ds].
0 S 8 0 SRR
Remarks. The limit process & (-) is stationary, as is the drift
f(+), but we have not been able to show that there is a Markov
(reflecting diffusion) process with the same distributions. There

probably is such a Markov process, as there probably is a
stationary pure Markov control u(:) such that Q(f,) = T(«,t)
w.p.l. In any case, our method gives much information on the
optimal process &£(:+); e.g., the multivariate distribituions of
ih(-) converge weakly to those of &(:), as do the distributions
of any bounded measurable functional F(& (+)), if F(x(-)) is
continuous w.p.l with the respect to the measure induced by £ ().
Indeed, one of the great advantages of the weak convergence method
is that it yields such information, in addition to approximations
to Y. Also, Y = average cost per unit time for £ (¢), and is the
limit of the average costs per unit time for the seauence of

approximations.

7. Optimality of the Limit &(+). Being a limit of optimal

approximating processes, & (-) 1s a good candidate for optimality
i k e~ | d

for the original optimization problem (with the reflected diffusion

model). Certain optimality properties are easy to show.

Theorem 4. Assume Al and A2. Let v(+) denote a continuous

stationary pure Markov control, such that the corresponding re-

flecting diffusion gV() s unique (in the weak sense) and has a




. unigue invariant measure uY, Then Y < A (where we let the
initial measure be u').
Ercgi. Let iﬁ and Ch(-) denote the discretized and interpolated
processes, resp., corresponding toc the fixed contrel v(-). Then
the cost Yv’h for the interpolated process is > ¥ by
optimality of uh. Let uv’h denote any invariant measure f{or
fh(-). Then {:h(-)} and the invariant measures éuv'“~ converge
weakly to ,V( ) and UV, resp., as h =+ 0 by arguments similar
E to those in Theorems 1 to 2. The theorem follows from this and (24).
1 Q. E.D.

k- Since we have not been able so far to prove that u(-) 18

stationary pure Markov, it would be nice to prove that u(-) is
optimal with respect to a broader class of controls than those in
Theorem 4. The class can be bhroadened, but at the expense of con-
siderable terminology and detail. We refer the reader to [2],

where broader classes of comparison controls are dealt with for a

number of other types of optimization problems.

REFERENCES

f1] Xushner, H.J. (1978) Optimality con Qlt;ORS for the
cost per unit time [rco’cm with a diffusion
Control and Optimization, 16, pp. J3O—3q6.

Y

(2] Kushner, H.J. (1977} Probability Methods for Kpprcxim:ticns
in Stochastic Centrol and for Elliptic Equations,
Academic Press, New York.

[3] Kushner, H.J. (1976) Probabilistic methods for finite differ-
ence ap“rowim1+ions to degenerate elliptic and parabolic
equations with Neumann and Dirichlet boundary conditions,

J. Math. Anal. and Applic., 53, pp. 643-688.

[4] Kushner, H.J. and DiMasi, G (1978) Approximations for func-
tionals and optimal control problems on jump diffusion
processes, J. Math. Anal. and Applic., 63, pp. 772-800.

{5] Strook, D.W. and Varadhan, S.R.S. (1971) Diffusion processes
with boundary conditions, Comm. Pure Appl. Math., 24,
pp. 147=225.

{6] Chung, X.L. (1960) Markov Chains with Stationary Transition
Probabilities, Springer-verlag, Berlin.

(7] Ross, S.M., (1968) Arbitrary state Markovian decision processes,
Ann, Math. Stat. 39; pp. 2118-2122.

[8] Schweitzer, P.J. and Federgruen, A. (1977) The asymptotic
behavior of undiscounted value iteration in Markov decision
problems, Math. of Oper. Res. 2, pp. 360-381.

[®] Billingsley, B. (1968) Convergence of Probability Measures,
Wiley, New York.

i ﬂ_______.__________—-“




{10] Lindvall, T. (1973) Weak convergence of probability measures
and random functions in the function space D[0,®), J. Appl.
Prob., 10, pp. 109-121.

[11] Skorokhod, A.V. (1956) Limit theorems for stochastic processes,
Th. of Prob. and its Applic., 1, pp. 261-290 vEngl. Transl.).




